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Secondary cleavages in ductile shear zones 
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Abst rac t - -Secondary  cleavages developed at late stages in ductile shear  zones show several features that are 
inconsistent with progressive simple shear  in the zone. These  are: the orientation of a single secondary cleavage 
oblique to the shear  zone boundaries;  conjugate  sets with opposite senses of  shear; and multiple sets with the same 
sense of shear. These  features can be explained if the bulk flow is parti t ioned into slip along discrete failure planes 
parallel to the primary foliation (S), coaxial stretching along the foliation, and spin. 

INTRODUCTION 

DEFORMED materials in ductile shear zones commonly 
contain more than one set of roughly planar surfaces 
(foliations or cleavages). One set, labelled S in Fig. 1, is 
defined by the preferred orientation of the long and 
intermediate axes of roughly ellipsoidal deformed grains 
and grain aggregates, and of tabular or prismatic mineral 
grains. If the material is initially isotropic and 
homogeneous, and deforms primarily by volume conser- 
vative processes, such a shape fabric can remain inde- 
pendent of material planes. It is then likely to correspond 
to the X'Y plane of the finite strain ellipsdid (Ramsay & 
Graham 1970), and will vary in orientation within a 
shear zone according to the strain. 

The development of the S-foliation may be accom- 
panied by formation of a set of discretely spaced surfaces 
parallel to the boundaries of the shear zone. These form 
as a result of periodic variations in the amount of shear 
strain, and are themselves small-scale shear zones. They 
may have any width and spacing between that of indi- 
vidual grains and that of the main zone. This fabric, 
labelled C in Fig. 1 after Ponce de Leon & Choukroune 
(1980), has also been described by Escher et  al. (1976), 
Berth6 et al. (1979), and Jegouzo (1980). They are 
specific to zones of simple shear, and can form because 
in simple shear one of the characteristic directions of the 
flow field (the only surfaces across which the rate of 
shear strain can vary without constraint) is fixed to a set 
of material planes. If some type of strain-softening 
process can operate, the finite strain can build up on 
these planes to define the C-zones. In any other type of 
flow the characteristic directions rotate through the 
material, and cannot become attached to a set of 
material planes. 

S and C surfaces may develop from the start of defor- 
mation, and may therefore be regarded as 'primary' 
foliations. Note that the change of orientation of the 
S-surfaces adjacent to the C-zones does not mean that S 
has become an active surface in the deformation. It 
simply reflects the change in orientation of the finite 
strain axes with increasing shear strain. S and C surfaces 
form together and do not overprint each other. Many 

shear zones, however, also contain secondary planar 
fabrics that develop at a later stage. One or more sets of 
spaced, irregular and discontinuous surfaces may form 
obliquely to S, particularly in micaceous rocks where S is 
strongly developed. These fabrics, identified as 'exten- 
sional crenulation cleavages' by Platt (1979) and Platt & 
Vissers (1980), and referred to as 'shear-band cleavage' 
by White et al. (1980), probably result from the aniso- 
tropy of material properties caused by the intensifying 
primary foliations. Like the C fabric, they are essentially 
sets of small-scale shear zones, although there is some 
evidence of minor dilation (Behrmann pers. comm. 
1982). Unlike the C fabric, they are normally oblique to 
the boundaries of the main shear zone (Platt & Vissers 
1980, White et al. 1980). They have been shown to 
overprint both S and C fabrics by Ponce de Leon & 
Choukroune (1980), who labelled them C' in their 
figure. They are shown as ' ecc '  in Fig. 1. Conjugate sets 
of eccs  with opposite senses of shear, and multiple sets 
with the same sense of shear, have been described by 
Platt & Vissers (1980). 

There are two major problems associated with the 
geometry of eccs  in shear zones: (1) their orientation" 
with respect to the shear-plane and (2) the development 
of conjugate sets, and multiple sets with the same sense 
of shear, neither of which are consistent with simple 
shear flow. 

ORIENTATION 

Platt & Vissers (1980) suggested that eccs  may be 
comparable to slip-lines in plastic materials (Hill 1950). 

Fig. 1. Diagram to illustrate the orientations and mutual  relationships 
of  foliations in shear-zones.  S, shape fabric; C, shear  bands,  ecc I & ecc 

2, conjugate sets of  extensional crenulation cleavages. 
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In isotropic incompressible plastic materials, slip lines 
propagate parallel to the so caIled 'characteristic direc- 
tions' of the spatial fields of stress and strain rate. For 
simple shear flow, these lie normal and parallel to the 
plane of shear. The implications of slip-line theory for 
anisotropic materials are unclear, however, because the 
principal directions of stress and strain rate are in general 
not parallel. Hill (1950) suggested that slip-lines would 
follow the characteristic directions of the flow field (and 
not the stress field) in an anisotropic material, so that 
they would be oriented normal and parallel to the shear 
plane, as in an isotropic material. This provides an 
adequate explanation for the orientation of the C-sur- 
faces, as noted above; but the two sets of ecc are 
commonly oblique to the slip plane, with the dominant 
low-angle set (ecc 1 in Fig. 1) at 15-20 ° to the shear zone 
boundaries (Platt & Vissers 1980, White et al. 1980). 
Two possible reasons for this obliquity are (a) the cleav- 
age zones do not propagate parallel to a characteristic 
direction of the flow field, or (b) the flow field deviates 
from simple shear. 

The first explanation could apply if, for example, 
deformation in the cleavage zones was dependent  on the 
mean stress. In this case they would propagate in direc- 
tions forming a dihedral angle of less than 90 ° about the 
maximum principal compressive stress (Od6 1960), 
although in an anisotropic material they would not 
necessarily be symmetrically disposed about this axis. 
This may explain the orientation of R~ Riedel shears in 
fault gouges, for example (S. Hall pers. comm. 1982). 

I want to explore the second possibility (that the strain 
deviates from simple shear) in more detail, as this may 
also provide an explanation for the formation of con- 
jugate and multiple sets. Lister & Williams (1979, 1983) 
suggest that flow in shear zones may commonly be 
spatially partitioned. Such spatial partitioning presents 
no problems as long as the bounding surfaces between 
differently deforming domains stretch and rotate at the 
same rates. Any inhomogeneous deformation can be 
treated as a spatial partitioning of a bulk flow field. In an 
anisotropic material an obvious way for flow to become 
partitioned is for there to be a degree of ductile or brittle 
failure parallel to the plane of anisotropy (S). Bulk 
simple shear flow, for example, could become par- 
titioned into three components:  slip along discrete sur- 
faces parallel to S; coaxial stretching of the whole system 
along S; and spin. If S is at an angle ~b to the shear plane, 
bulk simple shear flow at rate F becomes partit ioned 
into: (a) slip//S on discrete surfaces at an equivalent bulk 
rate L ~ = F cos 24~, (b) coaxial stretching of the whole 
sys tem/ /S  at D ' = ½F sin 2~b, and (c) spin of the whole 
system at W s = ½F(1 - cos 2~b) (see Appendix).  

Structures forming in the coaxially stretching domains 
would then have orientations governed by the local 
stress and flow fields (which would be parallel), rather 
than by the bulk simple shear of the whole system. 
Conjugate sets ofeccs ,  for example, could form at 45 ° on 
either side of the foliation. For ~b = 20 °, the cleavages 
would be at 65 and - 2 5  ° to the shear plane (Fig. 2). This 
model requires that there be effective failure along 

Fig. 2. Strain-partitioning model to explain extensional crenulation 
cleavages (ecc) in a shear zone. 

discrete surfaces or zones parallel to S, so that the shear 
stress parallel to S in the intervening domains is largely 
relieved. Deformation in the zones of failure is not 
simple shear, as the coaxial stretching component  is 
superposed. 

The foliation in the coaxially deforming domains will 
be offset and modified by the developing eccs, and will 
no longer track the principal plane of finite strain. The 
enveloping surface of S will be rotated by the spin 
component  W s towards the shear plane at the same rate 
as if it were a passive marker in simple shear flow. The 
eccs will also rotate and evolve, as discussed below. 

CONJUGATE SETS 

If domains of coaxial flow develop parallel to S, as 
described above, either or both of the two possible sets 
of eccs should develop equally well, although they would 
be confined to the these domains. In simple shear flow, 
by contrast, the high-angle set (ecc 2 in Fig. 2) rotates 
rapidly into an unfavourable orientation for continued 
slip (Platt & Vissers 1980). The presence of conjugate 
sets in shear zones may therefore support the flow-parti- 
tioning model outlined above. After initiation, the cleav- 
ages will rotate towards S at ~/= D s sin 277, where r/is the 
angle between the cleavage and S. 

SINGLE SETS 

Many shear zones contain only a single set of eccs, at a 
low angle to the shear plane (ecc 1 in Fig. 2). Their  
obliquity to the shear plane suggests that some degree of 
flow partitioning has occurred, but the absence of the 
conjugate set indicates that flow was not perfectly 
coaxial. A possible explanation is that ecc 1 has started 
to take up a proportion of the bulk shear strain, thereby 
amplifying this set at the expense of the other. The 
subsequent evolution of ecc 1 will then lie between the 
following two extremes. 

(1) If the flow is fully partit ioned into slip along S, 
stretching along S, and spin, ecc 1 rotates towards S at 
D s sin 2~7, and therefore rotates towards the shear plane 
at: 

~b = D s sin 2 7 / -  W s, where ~b is the angle between ecc 
1 and the shear plane (Fig. 2), and 77 = ~b + 4,. 

4' = ½F[sin 24~ sin 2(~b + ~b) - 1 + cos 2tb]. 
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Fig. 3. Orientation of the principal post-partitioning finite extension 
(El), the foliation (S), and a low angle set of extensional crenulation 
cleavages (ecc 1) relative to the shear plane with increasing shear strain 
y. ecc 1 is arbitrarily assumed to initiate at 45 ° to S, when S is at 25 ° to 

the shear plane. 

shear  zones  all suggest that flow in the zone depar ts  from 
progressive simple shear. Thc  p robab le  causc of this is a 

t endencyfor  slip to occur on discrete surfaces parallel  to 
the fol iat ion,  al lowing the flow to become more  coaxial 
in the in te rven ing  domains .  The  s tructures  in these 
domains  do not ,  therefore ,  directly reflect the bulk flow 

field, and  they might in fact give a mis leading impression 
of the bulk  sense of shear.  In areas where conjuga te  sets 

of extens ional  c renu la t ion  cleavage are c o m m o n ,  such as 
the Betic M o v e m e n t  Zone ,  sou thern  Spain,  and parts of 
the Vanoise  massif, French Alps  (Platt  & Vissers 1980), 
the two sets locally a l te rnate ,  so that significant volumes  
of rock conta in  cleavages indicat ing a sense of shear 
opposed  to that of the bulk flow-field. 
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A n  example  of this evolu t ion  is i l lustrated in Fig. 3, 
assuming  for the sake of a rgumen t  that  ecc  1 ini t ia tes  at 
45 ° to S, when  S is at 25 ° to the shear  plane.  

(2) If flow is comple te ly  repar t i t ioned  into slip a long 
ecc  1 at ½F cos 2~b, shor ten ing  a long ecc  1 at -½F sin 2~, 
and  spin at ½F(1 - cos 2~) ,  then ecc  1 rota tes  away from 

the shear  p lane  as if it were a passive m a r k e r  at ½ 
F(1 - cos 2~k). 

It  is qui te  likely that  the real s i tuat ion will lie be tween  
these two ext remes,  in which case ecc  1 will ro ta te  very 

slowly or no t  at all. 

M U L T I P L E  SETS 

Mult ip le  sets of ecc  1 cleavages,  with o lder  sets lying at 

a lower angle to S and to the shear  p lane  than  younger  
sets, have been  d o c u m e n t e d  from the Betic M o v e m e n t  
Z o n e  by Platt  & Vissers (1980), and  are well deve loped  

in back thrust ing zones  in the French  Alps  (F. Peel  pers. 
comm.) .  In  s imple-shear  flow, the low-angle  cleavage 
should rotate  away from the shear  p lane  at 
½F(1 - cos 2~) ,  and this pa t t e rn  of mul t ip le  sets should 
not  develop.  The  s t ra in-par t i t ion ing  mode l  [al ternat ive 
(i) above] ,  however ,  predicts  that  ecc  1 rotates  towards 
the shear  p lane  and  S, so that  it will become  less favour-  
ably o r ien ted  for slip within the local coaxial flow field. 
As shown in Fig. 3, a set in i t ia ted at 7/0 = 45 ° to S, when  

S was at ~b 0 = 25 ° to the shear  p lane ,  lies at r / =  25 ° to the 
enve lop ing  surface of S after an addi t ional  i nc r e me n t  of 
bulk  shear  strain A T = 1.2. The  empir ical  evidence  of 
Plat t  & Vissers (1980) suggests that  eccs  become  inactive 
when  77 = 30 ° approximate ly ,  and may be overpr in ted  by 
a younge r  set at a higher  angle to S. 

DISCUSSION 

Con juga t e  sets, mul t ip le  sets, and  obl iquely  o r ien ted  
single sets of ex tens ional  c renu la t ion  cleavages in ducti le 
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A P P E N D I X  

F l o w  p a r t i t i o n i n g  

The velocity gradients for simple shear flow at rate F parallel to x~ 
a r e :  

This can be partitioned into components of shear (L ~) at F cos 2cb 
along a direction at ~ to x~. coaxial stretching (D') at ~F sin 2& in this 
direction, and spin (W') at ~F(I - cos 2e5). Then 
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L~, = I 

[ ~ F  sin 2~ cos 2~b 
D~, = ~F sin: 2cb 

[ 0 
W~j = -½F(1 - cos 2~b) 

and 

-½F sin 2~ cos 2~ ½F cos 2~ (cos 2~b + 1)] 

½F cos 2a~ (cos 2~b - 1) ½F sin 2~b cos 2~ J 
½F sin-' 2~b ] 

J -½F sin 2~b cos 2~b 

½F(1 - cos 2~b)] 

0 ] 

(2) 

(3) 

(4) 

L,, = L~i + D~ i + W~j. (5) 

Rotation ofecc 1 

The rotation of ecc i shown in Fig. 3 is calculated as follows. Let ~b, 
tO and r /be  defined as in Fig. 2. Let/3 be the angle between S and the 
principal bulk finite extension El,  and 6 the angle between Et and the 
shear  plane. Then/3 = 8 - ~b, and rt = ~b + tO. The extensional crenu- 
lation cleavage is assumed for the sake of a rgument  to initiate at 45 ° to 
S, when S is at 25 ° to the shear  plane. Other  initial assumptions  are 

possible, but the evolutionary pattern does not change significantly. 
ecc 1 rotates as a passive marker ,  such that 

tan rt = tan rlo(I/ES) "- (6) 

where E '  is the total post-partit ioning stretch along S. If r/0 = 45 °, then 

tan r I = (1/ES) ' .  (7) 

But 

(1/ES) 2 = (1~El)2 cos 2/3 + (l/E2)" sinZ/3 (8) 

(Ramsay  1967, p. 66), and in simple shear  

(El)2 = ½[,y2 + 2 + y~ / (7  2 + 4)], (9) 

E2 = 1~El, (10) 

and 

tan 2& = 2/3, 

(Ramsay  1980). Now/3 = 6 - ~b, and the foliation rotates as a passive 
marker  in simple shear,  so 

cot ~b = cot ~b 0 + 3, ( 11 ) 

77 is then  calculated from (7) for values of 3,. 


